

香港中文大學

The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems Lecture 04: Combinational Circuit and Sequential Circuit

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

11111111

Recall: Concurrent vs. Sequential

Concurrent Statement

- ① Statements inside the architecture body can be executed concurrently, except statements enclosed by a process.
- ② Every statement will be <u>executed once</u> whenever <u>any</u> <u>signal in the statement</u> changes.

Sequential Statement

- ① Statements within a **process** are executed sequentially, and the result is obtained when the process is complete.
- ② process (sensitivity list): When one or more signals in the sensitivity list change state, the process executes once.
- ③ A process can be treated as one concurrent statement in the architecture body.

CENG3430 Lec03: Architectural Styles of VHDL

Recall: Concurrent vs. Sequential

Concurrent Statement	Sequential Statement
when-else	if-then-else
b <= "1000" when a = "00" else	if a = "00" then b <= "1000"
"0100" when a = "01 " else	elsif a = "01" then b <= "1000"
"0010" when a = "10 " else	elsif a = "10" then b <= "1000"
"0001" when a = "11";	else b <= "1000"
	end if;
with-select-when	case-when
with a select	case a is
b <= "1000" when "00",	when "00" => b <= "1000";
"0100" when "01",	when "01" => b <= "0100";
"0010" when "10",	when "10" => b <= "0010";
"0001" when "11";	when others => b <= "0001";

Outline

- Combinational Circuit and Sequential Circuit
- Building Blocks of a Processor
 - Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
 - Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

Combinational Circuit

- Combinational Circuit: no memory
 - Outputs are a function of the *present* inputs only.
 - As soon as inputs change, the values of previous outputs are lost.
 - It has no internal state (i.e., has no memory).
 - Common Examples: Full/Half Adders (*Lab01*), Encoders/Decoders (*Lab02*), Multiplexers (*Lab03*), Bi-directional Bus (*Lec04*), etc.
 - Rule: You can build a combinational circuit using <u>either</u> concurrent or sequential (i.e., process) statements.

Combinational Logic as a Process

• Consider a simple combinational logic:

c <= a and b;

• This logic can be also modeled as a process:

- All signals referenced in process must be in sensitivity list. entity And Good is

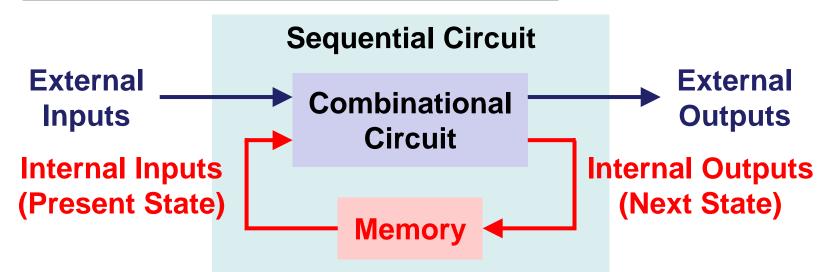
port (a, b: in std_logic; c: out std_logic); end And_Good; architecture Synthesis Good of And Good is

begin

process (a, b) -- sensitive to signals a and/or b
begin

c <= a and b; -- c updated

end process;


end;

Sequential Circuit

Sequential Circuit: has memory

- Outputs are a function of <u>the present inputs</u> and <u>the</u> <u>previous</u> outputs (i.e., the **internal state**).
 - It changes outputs based on <u>inputs</u>; but the outputs also depend upon <u>previous outputs</u> (i.e., the **internal state**) (i.e., has <u>memory</u>).
 - Example: Latch (*Lec04*), Flip-Flops (*Lec04*), Counters (*Lec05*), etc.
- Rule: You must build a sequential circuit with <u>only</u> sequential (i.e., process) statements.

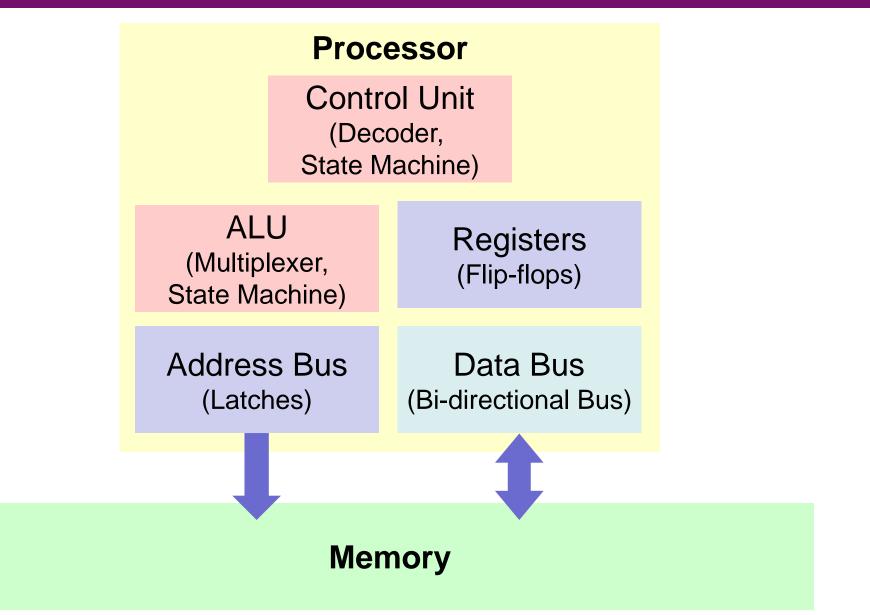


Combinational vs. Sequential Circuit

Combinational Circuit: no memory

- ① Outputs are a function of the *present* inputs only.
- ② Rule: Use either concurrent or sequential statements.
- Sequential Circuit: has memory
 - ① Outputs are a function of <u>the present inputs</u> and <u>the previous outputs</u> (i.e., the **internal state**).
 - ② Rule: Must use <u>sequential (i.e., process</u>) statements.

Outline

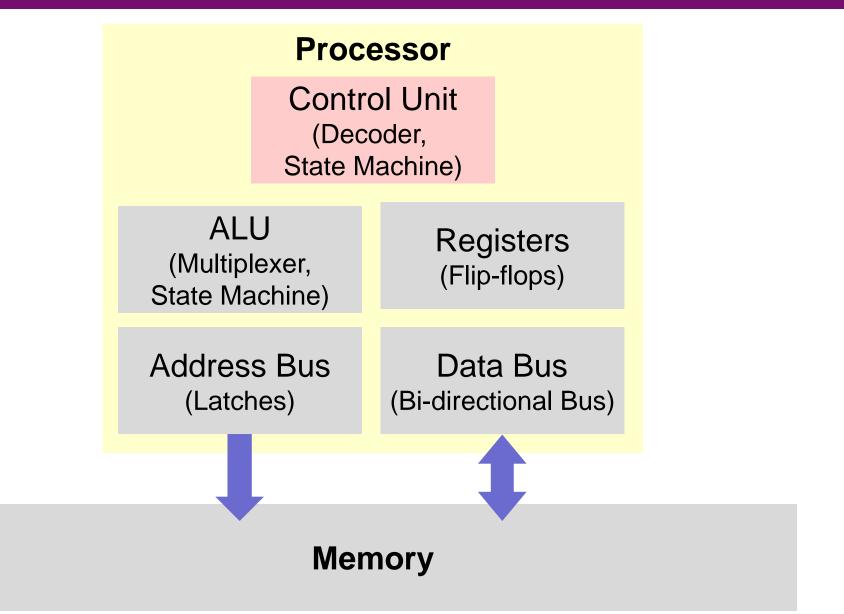


Combinational Circuit and Sequential Circuit

- Building Blocks of a Processor
 - Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
 - Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

Typical Processor Organization

Outline



Combinational Circuit and Sequential Circuit

- Building Blocks of a Processor
 - Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
 - Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

Building Blocks: Decoder

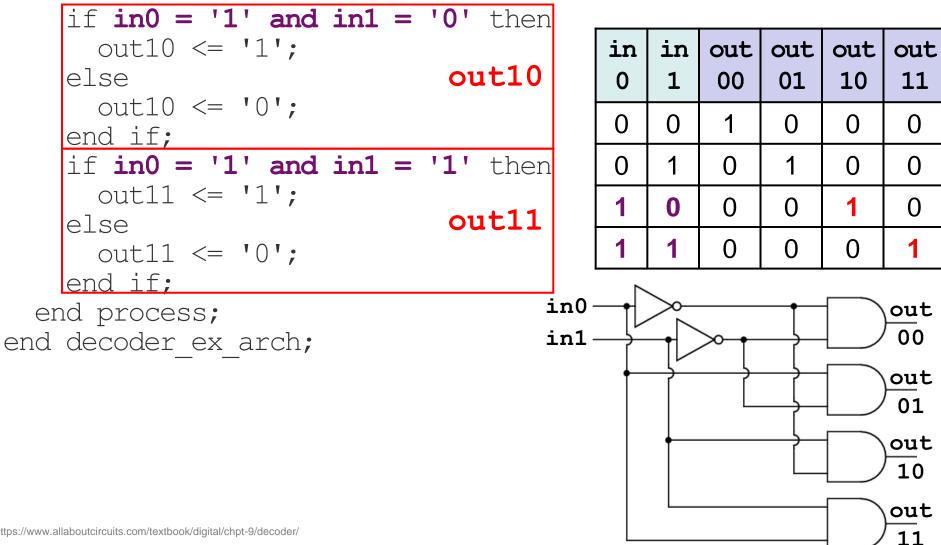
Combinational Circuit: Decoder (1/2)


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity decoder_ex is
port (in0,in1: in std_logic;
        out00,out01,out10,out11: out std_logic);
end decoder_ex;
architecture decoder_ex_arch of decoder_ex is
begin
```

```
process (in0, in1)
```

begin

if in0 = '0' and in1 =	= '0' then
out00 <= '1';	
else	out00
out00 <= '0';	
end if;	
if in0 = '0' and in1 =	= '1' then
out01 <= '1';	
else	out01
out01 <= '0';	
end if;	


in O	in 1	out 00	out 01	out 10	out 11
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Combinational Circuit: Decoder (2/2)

14

https://www.allaboutcircuits.com/textbook/digital/chpt-9/decoder/

Class Exercise 4.1

Student ID:	
Name:	

Date:

);

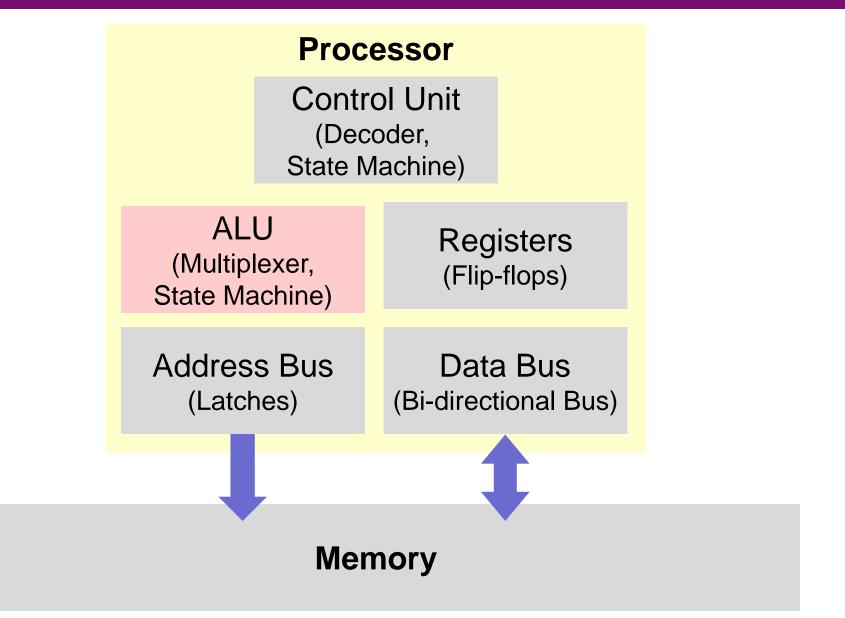
• Implement the Encoder based on the given table: port(

architecture encoder_ex_arch of encoder_ex is begin process () begin

end process;
end encoder ex arch; CENG3430 Lec04: Combinational Circuit and Sequential Circuit

in	in	in	in	out	out
00	01	10	11	0	1
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Outline



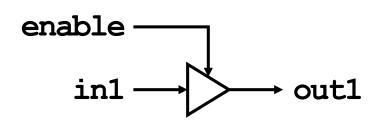
Combinational Circuit and Sequential Circuit

- Building Blocks of a Processor
 - Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
 - Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

Building Blocks: Multiplexer

Combinational Circuit: Multiplexer

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity mux ex is
port (in1, in2, sel: in std logic;
              out1: out std logic);
end mux ex;
architecture mux ex arch of mux ex is
begin
  process (in1, in2, sel)
  begin
    if sel = '0' then
      out1 <= in1; -- select in1
    else
      out1 <= in2; -- select in2</pre>
    end if;
  end process;
end mux ex arch;
```


CENG3430 Lec04: Combinational Circuit and Sequential Circuit

7

MUX

Recall: Tri-state Buffer

in1	enable	out1
0	0	Z
1	0	Z
0	1	0
1	1	1

outl <= inl when enable = '1' else 'Z'; end tri_ex_arch; CENG3430 Lec04: Combinational Circuit and Sequential Circuit</pre>

Class Exercise 4.2

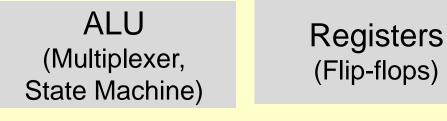
Student ID:	 Date:
Name:	

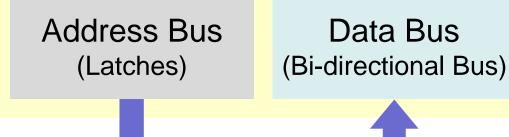
Specify the I/O signals in the circuit:

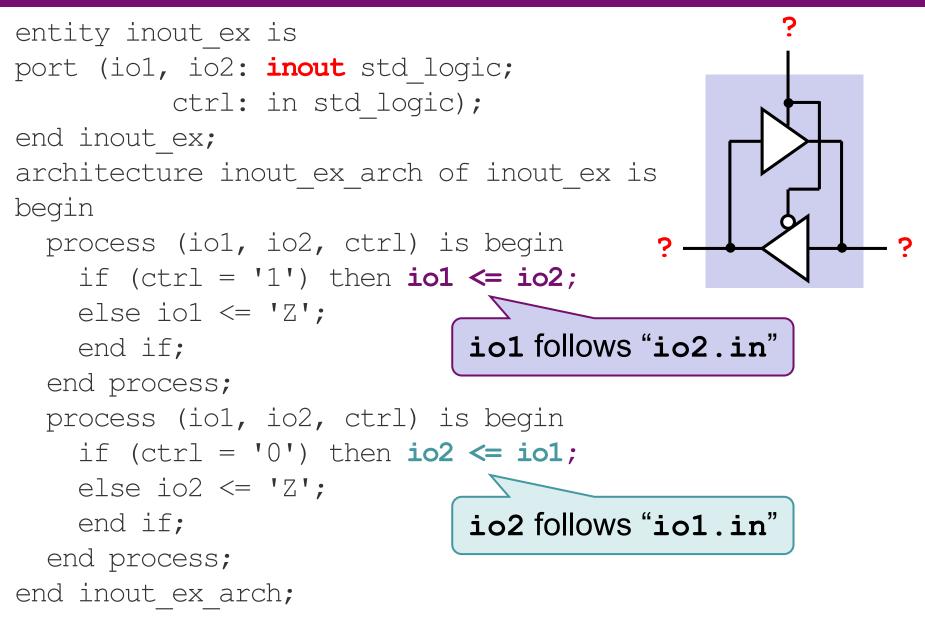
```
entity mux ex is
port (in1, in2, sel: in std logic;
              out1: out std logic);
end mux ex;
architecture mux ex arch of mux ex is
begin
  process (in1, in2, sel)
  begin
    if sel = '0' then
      out1 <= in1;</pre>
    else
      out1 \leq in2;
                                               MUX
    end if;
  end process;
end mux ex arch;
```

Outline

Combinational Circuit and Sequential Circuit


- Building Blocks of a Processor
 - Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
 - Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset


Building Blocks: Bi-directional Bus


Control Unit (Decoder, State Machine)

Memory

Combinational Circuit: Bi-directional Bus

Class Exercise 4.3

entity inout ex is port (io1, io2: inout std logic; ctrl: in std logic); end inout ex; architecture inout ex arch of inout ex is begin process (iol, io2, ctrl) is begin if (ctrl = '1') then **iol <= io2**; else iol $\leq 'Z'$; end if; end process; process (iol, io2, ctrl) is begin if (ctrl = '0') then io2 <= io1; else io $2 \leq 'Z';$ end if; end process; end inout ex arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

• Specify I/O signals:

Date:

Student ID: ____

Name:

Outline

Combinational Circuit and Sequential Circuit

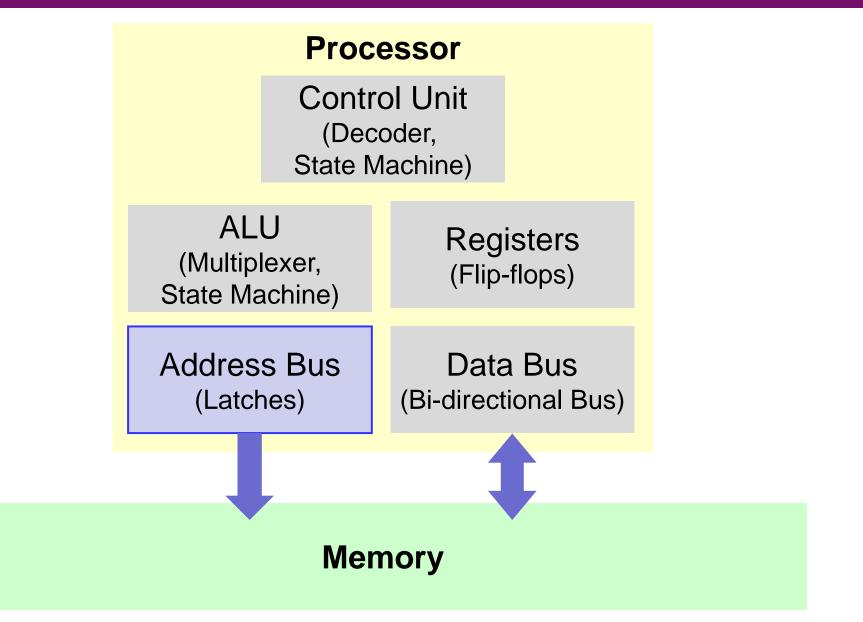
Building Blocks of a Processor

- Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
- Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

Latches and Flip Flops

- Latches and Flip-flops (FF) are the basic elements used to store information.
 - Each latch and flip flop can keep one bit of data.
- The main difference between latch and flip-flop:
 - A latch continuously checks input and changes the output whenever there is a change in input.
 - A latch has **no** clock signal.
 - A flip-flop continuously checks input and changes the output only at times determined by the clock signal.
 - A flip flop has a clock signal.

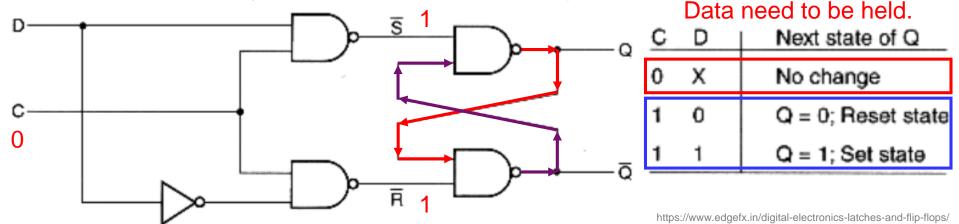
Outline


Combinational Circuit and Sequential Circuit

Building Blocks of a Processor

- Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
- Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

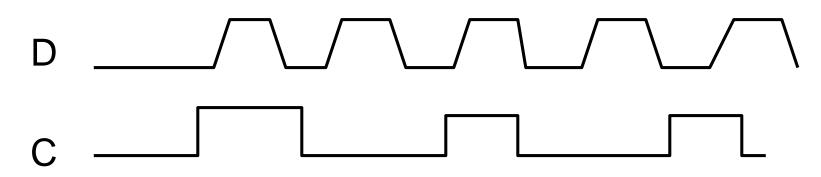
Building Blocks: Latch



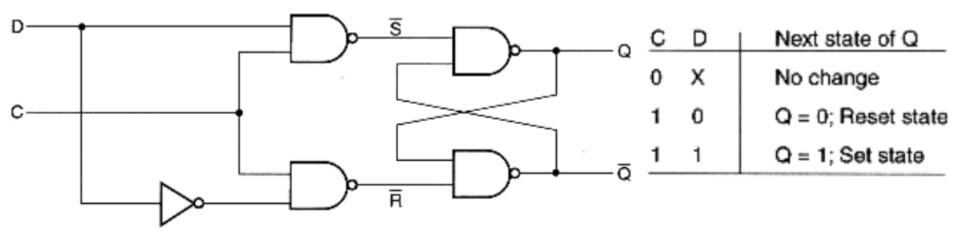
Sequential Circuit: Latch (1/2)

- Latches are asynchronous (no CLOCK signal).
 - It changes output only in response to input.
- Case Study: D Latch
 - When enable line C is high, the output Q follows input D.
 - \rightarrow That is why D latch is also called as transparent latch.
 - When enable line C is asserted, the latch is said to be transparent.
 - When C falls, the last state of D input is trapped and held.
 - \rightarrow That is why the latch has memory!

Sequential Circuit: Latch (2/2)


2	use	ary IEEE;(ok vivad IEEE.STD_LOGIC_1164 ty latch_ex is		4.	4)	\rightarrow D Q \rightarrow
4	port	: (C, D: in std_logic	C;			\rightarrow C
5		Q: out std_log	LC);			
6	end	latch_ex;				
7	arch	nitecture latch ex an	rch of	1	atch	ex is
8	begi				-	_
9	pı	rocess(C, D) sensi	itivit	У	list	
10	be	egin		-	_	
11		if $(C = '1')$ then	-	C	D	Next state of Q
12		Q <= D;		0	Х	No change
13		end if;	—×ē	1	0	Q = 0; Reset state
		no change (memory	7)			
14	er	nd process;	Ľ	1	1	Q = 1; Set state
15	end	latch_ex_arch;			http	s://www.edgefx.in/digital-electronics-latches-and-flip-flops/

Class Exercise 4.4

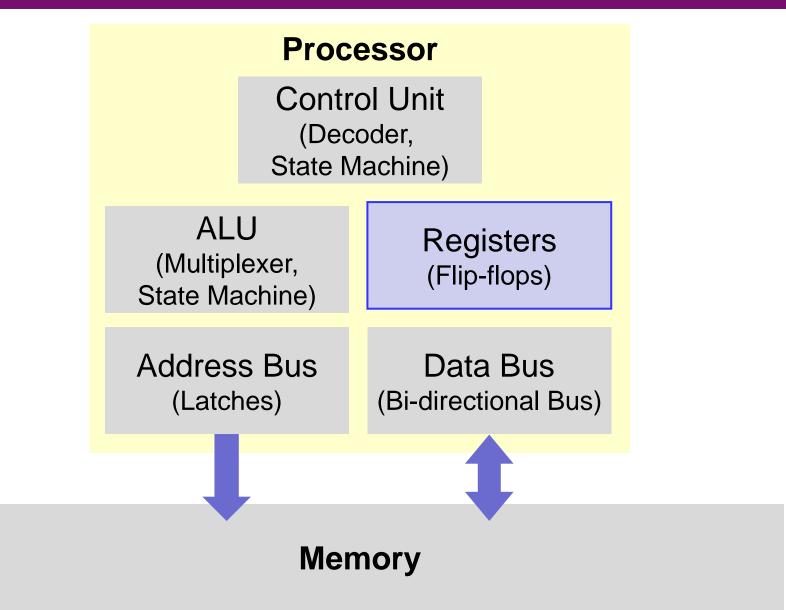

Studen ⁻	t ID:	
Name:		

Date:

• Given a D latch, draw Q in the following figure:

Q

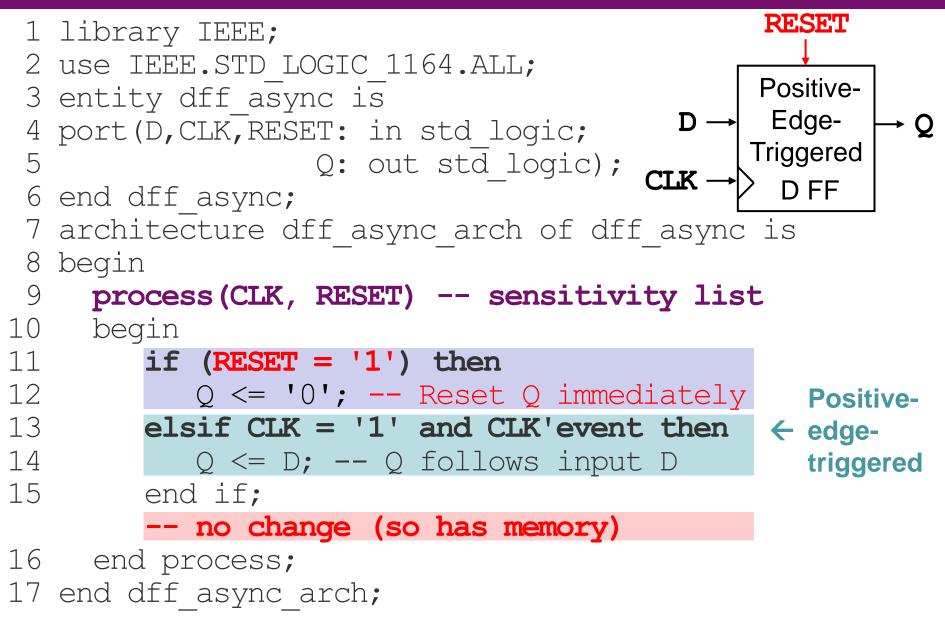
Outline


Combinational Circuit and Sequential Circuit

Building Blocks of a Processor

- Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
- Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

Building Blocks: Flip-flops



Sequential Circuit: Flip-flop

- A Latch is a non-clock-controlled memory device.
 - ① It has **no** CLOCK signal.
 - ② It changes output only in response to <u>data input</u>. (i.e., the value is set asynchronously).
- A Flip-flop (FF) is a clock-controlled memory device.
 - ① Different from a Latch, it has a <u>CLOCK signal</u> as input.
 - ② It stores the input value (i.e., low or high) and outputs the stored value only in response to the <u>CLOCK signal</u>.
 - Positive-Edge-Triggered: At every low to high of CLOCK.
 - Negative-Edge-Triggered: At every high to low of CLOCK.
 - ③ The value can be **reset** asynchronously or synchronously.
 - Async. Reset: Reset the value anytime.
 - Sync. Reset: Reset the value on positive or negative clock edges.

Positive-Edge-Triggered FF with Async. Reset

Recall: Attributes (Lec01)

- Another important signal attribute is the 'event.
 - This attribute yields a Boolean value of TRUE if an event has just occurred on the signal.
 - It is used primarily to determine if a clock has transitioned.
- Example (*more in Lec04*):

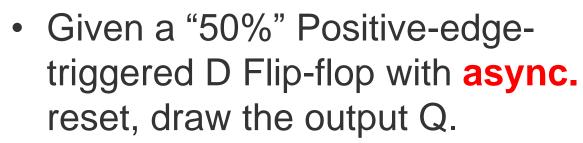
•••

...

if clock = '1' and clock'event then my_out <= my_in;</pre>

Class Exercise 4.5

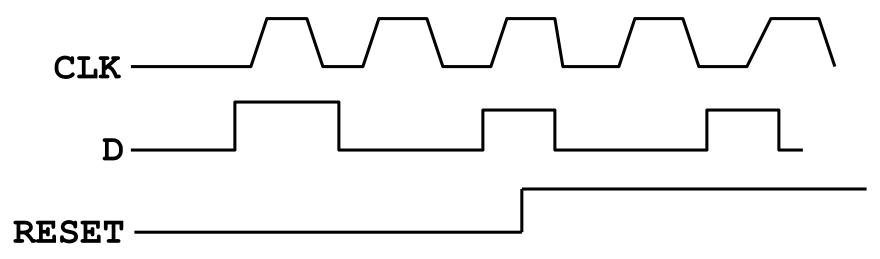
Student	ID:
Name:	


Date:

• Consider the following VHDL implementation of a positive-edge-triggered FF with asynchronous reset:

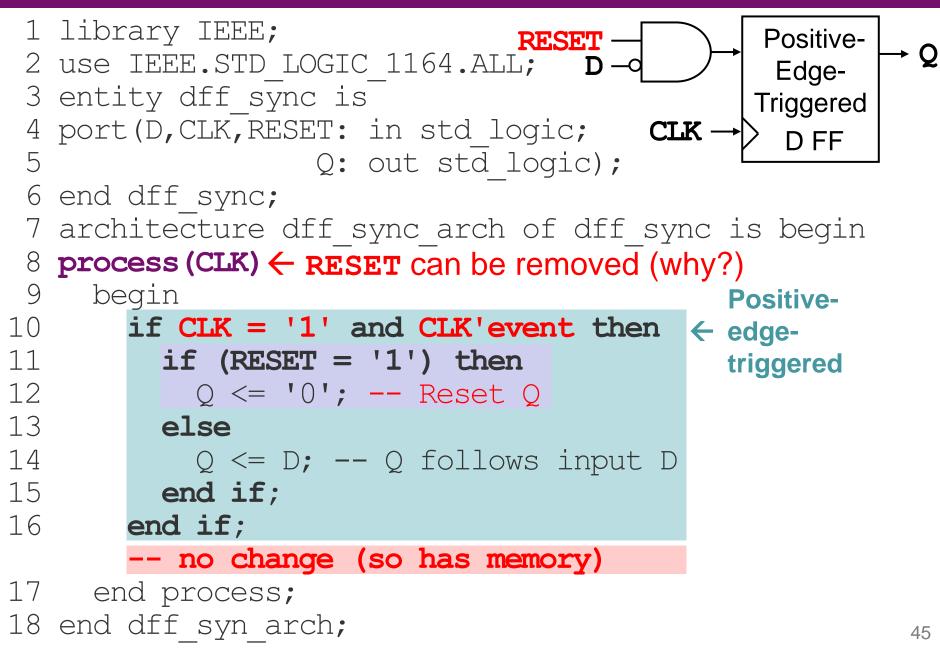
```
9
     process(CLK, RESET) -- sensitivity list
     begin
10
        if (RESET = '1') then
11
           Q <= '0'; -- Reset Q
12
13
        elsif CLK = '1' and CLK' event then
14
           Q \leq D; --Q follows input D
        end if;
15
        -- no change (so has memory)
16
   end process;
– When will line 9 be executed?
 Answer:
```

– Which signal is more "powerful"? CLK or RESET? Answer:

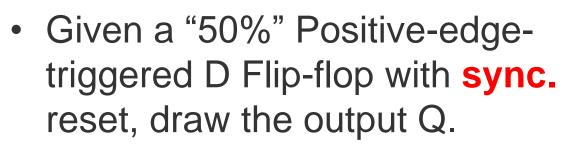

Class Exercise 4.6

- "50%" means it changes state when clock is 50% between high and low.

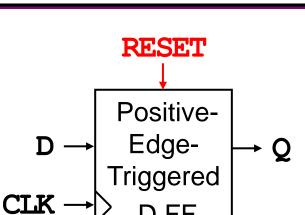
Date:



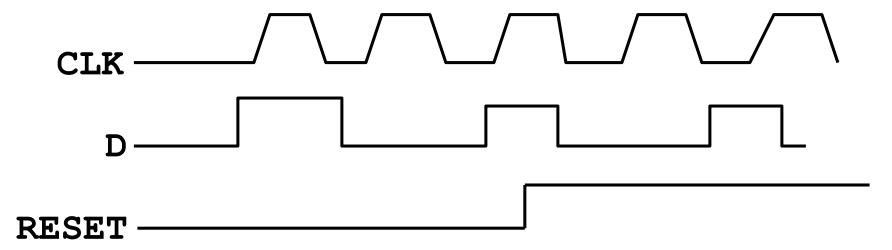
43


Student ID: ____

Name:


Positive-Edge-Triggered FF with Sync. Reset

Class Exercise 4.7



 - "50%" means it changes state when clock is 50% between high and low.

Student ID: ____

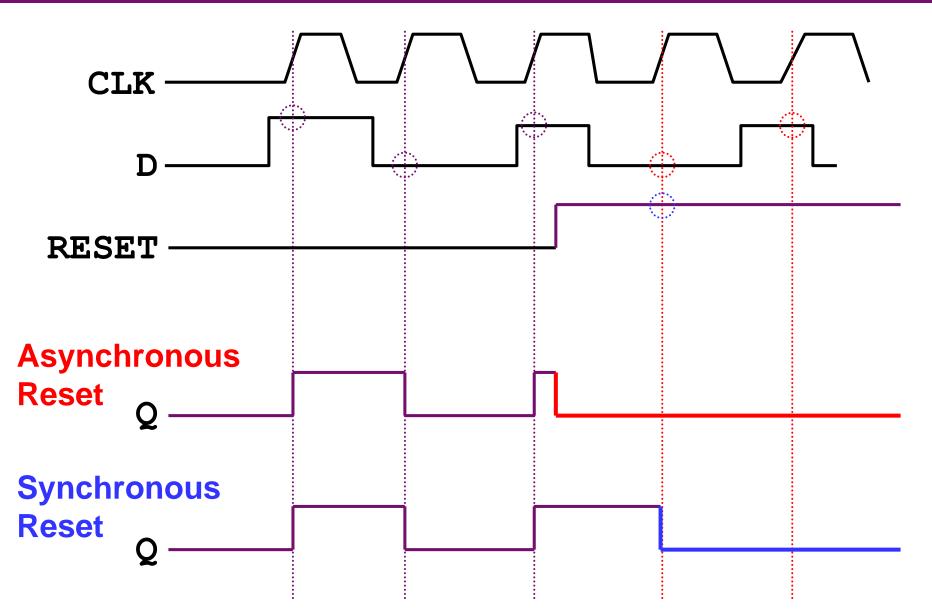
Name:

Date:

Async. Reset vs. Sync. Reset (1/2)

• The order of the statements inside the process determines asynchronous reset or synchronous reset.

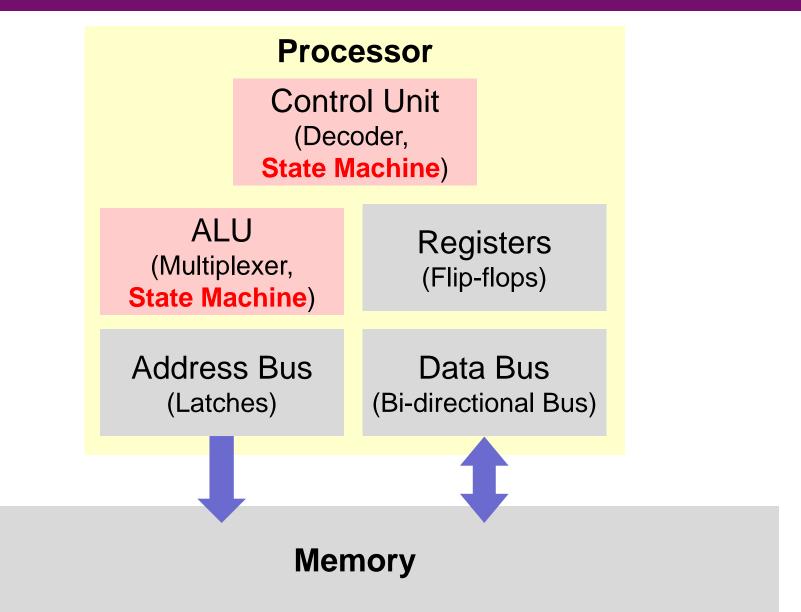
– Asynchronous Reset (check RESET first!)


11 if (RESET = '1') then 12 Q <= '0'; -- Reset Q 13 elsif CLK = '1' and CLK'event then 14 Q <= D; -- Q follows input D 15 end if;

– Synchronous Reset (check CLK first!)

10	if $CLK = '1'$ and CLK' event then
11	if (RESET = $'1'$) then
12	Q <= '0'; Reset Q
13	else
14	Q <= D; Q follows input D
15	end if;
16	end if;

Aysnc. Reset vs. Sync. Reset (2/2)



Summary

- Combinational Circuit and Sequential Circuit
- Building Blocks of a Processor
 - Combinational Circuit: No Memory
 - Decoder
 - Multiplexer
 - Bi-directional Bus
 - Sequential Circuit: Has Memory
 - Latch
 - Flip-flop with Asynchronous Reset
 - Flip-flop with Synchronous Reset

What's the next? Finite State Machine

